張國晨 簡曆
張國晨,1980.9,男,新澳门京葡萄威尼斯入口, 複雜系統與計算智能研究所所長, 副教授。2015年畢業于蘭州理工大學,控制科學與工程專業,博士。計算機學會太原分會副秘書長、山西省通信協會理事、中國仿真學會智能仿真優化與調度專委會委員。主要研究方向:計算機網絡,車輛調度,智能計算等。已發表SCI、EI論文二十餘篇,主持山西省自然科學基金兩項、主持省教改項目一項、安徽省重點實驗室開放課題一項、參與多項國家基金和橫向合作項目的研究工作。多年來一直從事計算機網絡課程的教學工作,獲得山西省教學成果一等獎一項、作為指導老師帶領學生多次參加互聯網+、計算機博弈等比賽并取得多次獲一等獎、二等獎優異成績。
教育與工作經曆:
(1) 2015.9至今, 新澳门京葡萄威尼斯入口, 新澳门京葡萄威尼斯入口, 教師
(2) 2006.9–20015.9, 新澳门京葡萄威尼斯入口, 應用科學學院, 教師
(3) 2010.9–2015.12, 蘭州理工大學, 控制理論與控制工程, 博士
(4) 2003.9–2006.7, 新澳门京葡萄威尼斯入口, 計算機科學與技術, 碩士
(5) 1999.9–2003.7, 新澳门京葡萄威尼斯入口, 計算機科學與技術, 學士
科研項目:
(1)山西省教學改革創新項目,新工科理念下基于項目導入模式的計算機網絡課程教學改革,2022.6-2024.6,在研,主持
(2)安徽大學開放課題,求解計算費時約束優化問題的進化算法研究,2021.7-2023.7,在研,主持
(3)山西省自然科學基金,201901D111264,代理模型輔助的動态車輛調度問題優化方法研究,2019.12-2022.12,在研,主持
(4)山西省青年科學基金,201601D021083,結合不确定性的混凝土罐車調度問題 研究,2016.01-2018.12,已結題,主持
(5)山西省優秀人才科技創新項目,201805D211028,數據驅動的複雜系統進化優化,2018.12-2021.12,已結題,參加
(6)山西省面上自然基金項目,201801D121131, 代理模型輔助的優化算法在複雜多目标優化問題中的應用研究,2018.12-2020.12,已結題,參加
(7) 國家青年科學基金項目,71701140,可修多部件系統視情非完美維修及其與備件庫存的聯合決策研究,2018.01-2020.12,已結題,參加
(8) 國家青年科學基金項目,61703297,具有随機相關性的多部件系統剩餘壽命預測方法和維修決策建模研究,2018.01-2020.12,已結題,參加。
(9) 山西省高等學校大學生創新創業訓練項目,PassWord-Shell的設計和實現,2017.6-2019.6,結題,指導老師
主講課程:
本科:計算機網絡,數據結構
研究生:高級/高等計算機網絡
獲獎:
(1)山西省教學成果獎, 基于項目任務驅動的計算機網絡課程教學模式改革與實踐,一等獎,2019
(2)互聯網+創新創業大賽優秀指導教師,2019
(3)全國計算機博弈大賽優秀指導教師,2019-2022
(4)計算機博弈大賽,一等獎1次,二等獎1次,指導教師,2022
(5)計算機博弈大賽,一等獎1次,指導教師,2021
(6)計算機博弈大賽,一等獎1次,二等獎2次,指導教師,2020
(7)新澳门京葡萄威尼斯入口教學競賽,二等獎,2010
論文:
[1] Zhang G, Zeng J, Zhang J. Rescheduling strategy of ready-mixed concrete vehicles: A case study of dynamic requirements of customers[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, (SCI)
[2] Zhang G C, Zeng J C, Zhang J H. Modelling and optimising of ready-mixed concrete vehicle scheduling problem with stochastic transportation time[J]. International Journal of Wireless and Mobile Computing, 2016, (EI)
[3]Guochen Zhang, Hui Shi, Zhaobo Chen, Xiaobo Li. Research on preventive maintenance strategy of multi-equipment system based on the Internet of things[J]. Int. J. Wireless and Mobile Computing. 2020, (EI)
[4] Zhang G C, Zeng J C, Modelling and solving for ready-mixed concrete scheduling problems with time dependence[J] , Int.J of Computing Science and Mathematics, 2013,(EI)
[5] Zhang G C, Zeng J C, Ready-Mixed Concrete Vehicle Rescheduling Method Based on the Internet of Things[J], Sensor Letters, 2014, (EI)
[6] Zhang G C, Zeng J C, Optimizing of ready-mixed concrete vehicle scheduling problem by hybrid heuristic algorithm[J], Computer Modelling & New Technologies. 2014,(EI)
[7] 張國晨,孫超利,石慧,李曉波,結合車輛日檢的混凝土罐車調度問題研究,工業工程,2020,(核心)
[8] 張國晨, 劉鵬飛,孫超利. 一種新環境選擇策略的多模态多目标優化算法. 應用科學學報. 2022,(核心)
[8]Hao Wang, Chaoli Sun, Guochen Zhang, Jonathan E. Fieldsend, Yaochu Jin, Non-dominated Sorting on Performance Indicators for Evolutionary Many-objective Optimization, Information Sciences, 2021, 551, 23-38. (SCI,)
[9]Peng Liao, Chaoli Sun, Guochen Zhang, Yaochu Jin, Multi-surrogate Multi-tasking Optimization of Expensive problems, Knowledge-Based Systems, 2020, 205, 106262. (SCI,)
[10]Yi Zhao, Chaoli Sun, Jianchao Zeng, Ying Tan, Guochen Zhang, A Surrogate-ensemble Assisted Expensive Many-objective Optimization, Knowledge-Based Systems, 2021, 211, 106520. (SCI)
[11]Hao Wang, Mengnan Liang, Chaoli Sun, Guochen Zhang, Liping Xie, Multiple-strategy learning particle swarm optimization for large-scale optimization problems, Complex & Intelligent Systems, 2020, accepted. (SCI,)
[12]Shufen Qin, Chaoli Sun, Guochen Zhang, Xiaojuan He, Ying Tan, A modified particle swarm optimization based on decomposition with different ideal points for many-objective optimization problems, Complex & Intelligent Systems, 2020, 6(2), 263-274. (SCI)
[13]Guoxia Fu, Chaoli Sun, Ying Tan, Guochen Zhang, Yaochu Jin, A Surrogate-assisted Evolutionary Algorithm with Random Feature Selection for Large-scale Expensive Problems, 16th International Conference on Parallel Problem Solving from Nature (PPSN), 2020, accepted. (CCF B類會議)
[14]Shufen Qin, Chaoli Sun, Yaochu Jin, Guochen Zhang, Bayesian Approaches to Surrogate-Assisted Evolutionary Multi-objective Optimization: A Comparative Study, 2019 IEEE Symposium Series on Computational Intelligence (SSCI)
[15]Wang, H., Sun, C., Zhang, G., Fieldsend, J. E., & Jin, Y. Non-dominated sorting on performance indicators for evolutionary many-objective optimization. Information Sciences, 2021,(SCI)
[16]Qin, S., Sun, C., Zhang, G., He, X., & Tan, Y. A modified particle swarm optimization based ondecomposition with different ideal points for many-objective optimization problems. Complex & Intelligent Systems, 2020,(SCI)
[17]Qin, S., Li, C., Sun, C., Zhang, G., & Li, X. Multiple infill criterion-assisted hybrid evolutionary optimization for medium-dimensional computationally expensive problems. Complex & Intelligent Systems, 2022,(SCI)
[18]Wang, H., Liang, M., Sun, C., Zhang, G., & Xie, L. Multiple-strategy learning particle swarm optimization for large-scale optimization problems. Complex & Intelligent Systems, 2021,(SCI)
[19]Zhao, Y., Sun, C., Zeng, J., Tan, Y., & Zhang, G. A surrogate-ensemble assisted expensive many-objective optimization. Knowledge-Based Systems, 2021,(SCI)
[20]王浩,孫超利 & 張國晨..基于估值不确定度排序順序均值采樣的昂貴高維多目标進化算法. 控制與決策. 2021,(EI)
[21]孫超利,李婵,秦淑芬,張國晨 & 李曉波.基于不确定度采樣準則的費時問題優化算法. 控制與決策,2022,(EI)